

Virtual Validation of Continental Radar Sensors Gen 6 Virtual Testing, Sensor Models and VIVALDI

Sreehari Buddappagari, Sandro Reith, Hasan Iqbal Continental www.continental-automotive.com

BA Autonomous Mobility

OUR VISION Autonomous Mobility for You. Anywhere. Anytime.

OUR MISSION

Developing the Future of Mobility.

- > High performance radars are instrumental for autonomous mobility.
- Focus: higher value extraction in development process of next-gen radars.
- > Modus operandi: increased importance of virtual validation and Al.
- Outcome: boosted performance of radars, increased value of sensor development chain (cost/performance optimization) and more environment friendly.

1500

26 June 202

Core Products of Autonomous Mobility Provider of Full Stack Solutions

Continental's Autonomous Mobility Business Leading Player with Track Record of Profitable Growth

> 100 million Radar sensors delivered since 1999

🛈 ntinental 🏂

Gen 6 Virtual Testing, Sensor Models and VIVALDI

© Continental AG

26 June 2023

Ideally Placed for Future Challenges

AI & Virtual Validation for the Era of Autonomous Mobility

The Vital Importance of Data Quality & Efficient Data Management

Neural Network Development

AI Competence Center

Core development of AI technologies

Roll-out to product development teams

Global Test Vehicle Fleet

Collecting around 100 terabytes of data each day – equivalent to 50,000 hours of movies

@ntinental **⅍**

Gen 6 Virtual Testing, Sensor Models and VIVALDI

© Continental AG

Sampling Methods

Investigation of 'Smart' Sampling – I

- Concentration of rays in areas with targets
 - Without compromising on representation of other areas in scenario
- Multiple ray 'guiding' algorithms were tried and rated

Skewed scenario sampling, inequal resolution cell dimensions

- First approach was 'dumb' ray guiding
 - Rays were fired in direction of positive hits

jittered - predefined)

- No mechanism to cater to uniform sampling of scenario space
- Result is a considerable distortion in the 3-D sampled representation

Investigation of 'Smart' Sampling – II

Halton Sampling in 2-D (guided sampling strategy)

Uniformly sampled scenario space

- For uniformly sampled space, pseudo random numbers should be
 - Progressive no of samples not fixed beforehand
 - ii. Low-discrepancy distance between samples is maximized
- This results in a uniformly sampled space and skewed cells are avoided
- Halton sampling satisfies both progressive and low-discrepancy conditions

Investigation of 'Smart' Sampling – III

3-D scene sampling

- Split the examples into training examples and rendering examples
 - Find best parameter set for rendering sampling points
 - ii. Increase the resolution at the points of interest (hit point on object) \rightarrow warping

Scrutiny of Antenna Beam-Pattern

Measurement

- Comparison of beam patterns
 - Sharp drop in gain at 0° azimuth angle
- Caused by extending sample in 2-D to a hemisphere in 3-D
 - Error in transformation from 2-D cartesian coordinates to 2-D polar to 3-D spherical

Corrected Beam-Pattern

VIVALDI

© Continental AG

Internal

Confidential

Validation of Synthetic Data

Validation of Euro-NCAP Scenarios

Chosen scenario: CPLA

- Car travelling at 30 km/h approaches pedestrian walking away at 5 km/h
- This scenario was simulated using VTD and evaluated using the ARS620 sensor model
 - The simulated sensor output was evaluated using the AE signal processing toolchain used for actual prototype sensors
 - Plot shows the simulated detections
- To evaluate quality of virtual data, set of KPIs need to be identified
 - The behavior of real data to be used as a measure for comparison

- On the left is plot of all detections against time for two measurements and one simulation
- Measured data agree well with each other
 - Larger difference to simulated data: Real pedestrian and driver cannot maintain exact speed and walk/drive in an exact straight line

Suggested KPI for Virtual Data Validation

Use of Mahalanobis Distance – CPLA Scenario

- One proposal for KPI to judge quality of virtual data: distance of detection points between measurement and simulation
- Mahalanobis distance is suitable as it accounts for correlation between datasets
 - It is used frequently with large datasets with manifold correlations (AI, statistics)
 - Simple Euclidean distance does not account for 'data trends'
- Plot of Mahalanobis distances for CPLA plotted
 - Good initial overlap between measurement and simulation
 - Spread of distances very similar
- Some differences occur due to walking and driving 'uncertainties' of real people vs simulated scenarios
- Further investigation needed before a general statement can be made
- Centre of gravity for simulated data is offset by ≈1/2 m compared to measurements

Ego velocity – 30 km/h Pedestrian velocity – 5 km/h

© Continental AG

Validation of Euro-NCAP Scenarios

Chosen scenario: CPNC

- Car travelling at 30 km/h approaches two longitudinal parked cars and child walking across
- This scenario was simulated using VTD and evaluated using the ARS620 sensor model
 - The simulated sensor output was evaluated using the AE signal processing toolchain used for actual prototype sensors
- To evaluate quality of virtual data, set of KPIs need to be identified
 - The behavior of real data to be used as a measure for comparison
- 7.2.6 Car-to-Pedestrian Nearside Child

@ntinental <u></u>≸

Gen 6 Virtual Testing, Sensor Models and VIVALDI

© Continental AG

Suggested KPI for Virtual Data Validation

Use of Mahalanobis Distance – CPNC Scenario

- All objects have the same material
- Euro-NCAP dummy is not a good reflector, but metal human in the simulation is a very good reflector
 - No moving parts of the simulated child
 - Simulated child has very slim shape (width), therefore many detections with narrow MHD distance distribution
- Detections on middle car are most likely distributed on the visible side, same as for simulation → good coverage by model
- Outer surface of cars is reflecting \rightarrow difference on first object due to viewpoint
 - In the simulation, majority of the energy is reflected from the outer surface of the car
 - No reflections from inside and the underside of the car in the simulation
- Further investigation needed before a general statement can be made
- Mahalanobis distance is sensitive against offsets and different distributions → small differences have big impact → all 3 comparisons show a good alignment

© Continental AG

Benchmarking of Simulated Data

Basics of Synthetic Aperture Radar (SAR)

© Continental AG

Internal

SAR Processing using Virtually Generated Data – One Corner Reflector

Expected result

Phase error due to defective doppler & carrier frequency

Phase error due to defective carrier frequency

- Synthetic Aperture Radar (SAR) requires precise phase information of targets for correct processing
 - Accuracy of trajectory and range need to be in the order of $\approx \lambda/2$
- SAR can thus be used for benchmarking the quality of virtual data
 - Not only the amplitude with respect to RCS of target needs to be correct
 - But the phase information also needs to be accurate over many hundreds and thousands of cycles
- Finally, the virtual radar returns are coherently integrated to form a SAR image of the target scenario
- Using SAR significant phase errors were uncovered
 - i. Phase inaccuracies were introduced due to inaccurate doppler shift for higher level of reflection
 - ii. A false simulated carrier frequency added phase noise \rightarrow blurring in image

SAR Processing using Virtually Generated Data – Two Cars & One Corner I

- Shape of cars in simulated data not clear
 - High clutter noise present
 - Corner is focused well

- Images on top show processed
 SAR images from virtual data
- Bottom image is from a real measurement
 - Presented for comparison purposes

Red arrow indicates the driving direction

Green arrow indicates direction of radar bore-sight

Ontinental

© Continental AG

Confidential

SAR Processing using Virtually Generated Data – Two Cars & One Corner II

- Shape of cars very clear
- Sensor model extended to assigning multiple materials to a single object
 - Parts of car not all metallic
 - Reduced number of strong reflections
 - Presented for comparison purposes
- Material parameters from OpenMaterials implementation

- For example, even the tires and the windshield was metallic
- This led to stray rays with higher 'energy'

Red arrow indicates the driving direction

Green arrow indicates direction of radar bore-sight

@ntinental **⅍**

© Continental AG

Sensor Models and Vehicle Integration Simulation

Overview – Virtual V&V of radar - SiL

Credits: Dirk Ulbricht

Different Automotive Model Categories

Advantages

- > Physical solver
- External Tool
- > Long time experience

Disadvantages

- Computing power
- > Environment description
- > Calculation time

Tools

> CST, Ansys HFSS

Physical/Geometrical

Advantages

- Fast computation
- Physical-based results
- > 3D Environment

Disadvantages

- > Approximations
- > Low number of users
- Depends on HW

> Tools

 IPG RSI, Ansys, Conti VCM

Phenomelogical

Advantages

- > Fast computation
- > Easy Implementation
- > Reduced Physics

Disadvantages

- > Unknown Effects
- Masked errors

Tools

IPG CarMaker, Hexagon
 VTD, Conti Pheno/Pheno+

Advantages

- > Functional Test
- > Easy
- > Fast
- Proof of Concept
- Disadvantages
- Not realistic
- Tools
- IPG CarMaker, Hexagon VTD

Low

High

COMPLEXITY

🙆 ntinental 🔧

Sensor Model and Simulation of Detections Example Scenario

Drive virtually to Ilmenau on the A71 and drive under the Gruenbrucke

Phenomenological Sensor Model

🙆 ntinental 为

Confidential

Radar Phenomenological Sensor Model

Continental Radar Integration Simulation

Various Kinds of Radar Simulation environment

Antenna/ Sensor only

Characterize antenna.

design & performance

Optimize sensor

Radar Integration (Sensor + Radome)

the Radome on the

sensor.

radiation pattern of the

Multipath analysis (internal)

Evaluate multipath

possibilities that may

therefore false alarms

cause ghost targets

Scenario Simulation

Evaluate radar detectability using a virtual world, Synthetic Data as interface to HiL and SiL

From Component to Vehicle level

🙆 ntinental 🏂

Radar Integration – simulation example

2nd surface analysis – visual representation of possible effects

Autonomous Mobility © Continental AG

Summary and Remarks

- Radar behavior can be simulated and estimated with radar sensor models
- 2 types of models Physical and Phenomenological
- Tradeoffs accuracy and execution time
- Simulated radar performance after mounting and integration of radar in vehicle, e.g. in bumper and fascia

Thank you!

Example Al Application: Radar Based Semantic Segmentation

Based on the RadarScenes Dataset (https://radar-scenes.com/dataset/about/)

- Object classification for assisted driving
- Based on open-source measurements
- Manual labelling of data involved

Virtual Validation in Context of AD / ADAS Summary

- Considerable progress has been made towards improving the quality of raytracing output
- Ability to handle complex scenarios virtually is dependent on quality of virtual sensor data compared to real measurements
- > Radar mounting and integration effects also can be estimated by simulation
- Radar is the key technology for assisted and automated driving: Proven technology since 1999, robust under all weather conditions and able to handle complex and highly dynamic scenarios.
- For the development of the next generation of radar sensors, virtual validation acts as a powerful catalyst by speeding up antenna design and system architecture concepts.

Deep learning radar CNNs require a large amount of labeled training data. Virtual validation will allow us to generate this training data without the need for manual labeling of on-road test data.

Ontinental

Gen 6 Virtual Testing, Sensor Models and VIVALDI

© Continental AG

Thank you! We look forward to a fruitful cooperation.

hasan.iqbal@continental.com

🛈 ntinental 🏂

Gen 6 Virtual Testing, Sensor Models and VIVALDI

© Continental AG

Confidential

26 June 2023